Categories
FPGA satelit

Technical Implementation of Dual Mode Fault Tolerance

Abstract

Field Programmable Gate Array (FPGA) is susceptible from hazardous radiation that leads to be in error state. In order to avoid that condition, we apply a fault tolerance technique. Most of the fault tolerances today are only using one mode, mean the fault tolerance that is applied will run all of the time without any changing its design. It is neglect about the condition, when the hazard radiation will occur more frequently or not. As researches have shown that in the orbit, the radiation hazard, which is happening frequently in the South Atlantic Anomaly (SAA). Therefore, in this project creates a new methodology in implementation of fault tolerance by using dual mode, when radiation is happened frequent we apply more robust fault tolerance, if not frequent we apply by simple fault tolerance. A robust fault tolerance will use more resources and simple fault tolerance will use less resources. Configuration in FPGA is done by Dynamic Partial Reconfiguration (DPR) means the transition from robust to simple fault tolerance or vice versa is done while the system is running. In this paper will talk about the technical implementation of dual mode fault tolerance, by presenting systematically order and important aspect to get success in implementing the design. The paper shows a result that dual mode fault tolerance can be configured in FPGA successfully.

(click here please)

Categories
FPGA satelit

Five Modular Redundancy with Mitigation Technique to Recover the Error Module

Hazard radiation can lead the system fault therefore Fault Tolerance is required. Fault Tolerant is a system, which is designed to keep operations running, despite the degradation in the specific module is happening. Many fault tolerances have been developed to handle the problem, to find the most robust and efficient in the possible technology. This paper will present the Five Modular Redundancy (FMR) with Mitigation Technique to Recover the Error Module. With Dynamic Partial Reconfiguration technology that have already   available today, such fault tolerance technique can be implemented successfully. The project showed the robustness of the system is increased and module which is error can be recovered immediately.

(for the PDF click here)

Categories
satelit

Error Detection and Correction System (EDAC) of On Board Data Handling (OBDH) in Real Time Operating System Behaviour

The satellite requires the support of a robust sub system. On Board Data Handling (OBDH) is the core function of the satellite subsystem and has to be error free in managing the operation of the satellite. It should withstand the harsh environmental conditions in space that has a lot of hazards caused by radiations. In view of these two conditions, the OBDH design should be able to manage the operation and overcome the hazards of radiation. In order to manage the operation Real Time Operating System (RTOS) was applied. RTOS was able to manage the task efficiently and effectively. In the aerospace domain, RTOS has become popular because of its strength in managing the operating system. Error Detection and Correction System (EDAC) system was applied to make OBDH more robust. This paper will discuss the implementation of the EDAC system in tandem with the RTOS behaviour to manage the operation and increase the robustness of the system. The findings show that OBDH can be programmed successfully using RTOS to handle critical and robust operations.

(the PDF is here)

Categories
Mikrokontroler satelit

Satelit Nano sebagai Wahana Penelitian dan Pendidikan Satelit Indonesia

Saat ini terjadi peningkatan minat pembuatan satelit nano di berbagai perguruan tinggi di seluruh dunia. Dari sudut pandang pendidikan, satelit nano telah dianggap sebagai alat pendidikan yang baik karena melibatkan mahasiswa secara langsung mulai dari perancangan, pembuatan, pengujian, peluncuran, pengoperasian hingga analisis data. Untuk merealisasikan pendidikan satelit menggunakan satelit nano dengan sumber daya yang terbatas, sangatlah penting untuk menentukan fokus dan hal-hal yang harus dihindari. Paper ini melakukan studi banding terhadap pengalaman dan sekaligus evaluasi Program INSPIRE (Indonesian Nano-Satellite Platform Initiative for Research & Education) dengan satelit IiNUSAT-1 dan beberapa kasus yang serupa di luar negeri.

Makalah ini disampaikan pada acara Indonesian Student Conference on Satellite (ISCoS) 2012 di Jurusan Teknik Elektro, Fakultas Teknologi Industri, ITS – Surabaya, 24 Nopember 2012 (PDF)

Categories
Mikrokontroler satelit

Indonesian Cansat Training Program

The CanSat Leader Training Program (CLTP) is a training course, conducted by UNISEC Japan, that was established for participants to experience the entire cycle of CanSat development from the design to launch of model rockets. Through the program, participants will learn the space technology and teaching methods utilized in space engineering. CLTP held in Japan in every year and followed one of them by representatives of Indonesia, Dr. Agfianto Eko Putra, in 2011. The CanSat Model of developing satellite is suitable for education of aerospace technology, especially satellites, due to a more affordable range of funds independently and components that are easier to find.

Universitas Gadjah Mada, especially Electronics and Instrumentation Dept., has adopted to implement the CanSat education among undergraduate students to develop Indonesian CanSat Training Program. In 2012, as the early years, it has been formed several teams for CanSat development. The membership of each team is 3 or 4 undergraduate students. Every team must design the mission, hardware, and software of the satellite independently. Several constrains are given in the form of dimension, mass, and power used by the satellite. The dimension of Cans is limited to 65 mm of diameter and 150 mm of the height. The maximum weight allowed is 350 grams. Maximum power used must be less then 1300 mAh. For the microprocessor unit, every team must use the PIC16F877, the microcontroller that suitable for satellite environment. Sixteen teams was formed, while the stages that has been done are MDR (Mission Design Review), PDR (Preliminary Design Review) and developing the FM (Flight Module).

(download the PDF format for this paper which was poster-presented at the 4th UN/Japan Nano-Satellite Symposium in Nagoya on October 10-13, 2012)

Categories
Mikrokontroler satelit

Purwarupa On-Board Data Handling (OBDH) berbasis Mikrokontroler LPC1769 untuk Satelit IiNUSAT-1

Telah dibuat sebuah purwarupa On Board Data Handling (OBDH) atau Command and Data Handling (CDHS) untuk satelit nano IiNUSAT-1 yang merupakan hasil proyek konsorsium INSPIRE (Indonesian Nano Satellite Platform Initiative for Research and Education) yang terdiri dari 6 perguruan tinggi: UGM, UI, ITB, PENS, ITS dan ITTelkom serta 1 institusi LAPAN. OBDH ini dibangun menggunakan mikrokontroler ARM Cortex M3 NXP LPC1769 agar dapat mengakomodasi tugas-tugas OBDH dalam satelit seperti komunikasi dengan sub-modul menggunakan 4 jalur native UART dan akuisisi data housekeeping seperti arus dan suhu OBDH. Pengujian dilakukan untuk mendapatkan data-data arus yang dibutuhkan saat melakukan multitasking dan kebutuhan memori-nya.

Klik disini untuk mendapatkan PDF paper-nya. Semoga bermanfaat..

Categories
FPGA Mikrokontroler satelit

IiNUSAT-1: The 1st Indonesian Inter-University Nano-Satellite for Research and Education

Mastery of aerospace technology becomes very important for Indonesia. Due to the given the vast areas of Indonesia mostly in the form of marine waters. This condition has made a guarding and monitoring becomes easy. Therefore needed satellite technology that can be utilized to guard the interests of the territory of Indonesia.

The success of developing IiNUSAT-1 on the one hand proves that the universities in Indonesia have competence in the field of nano-satellite development, on the other hand also shows that gotong-royong (working-together) in research-networks and technology will accelerate the research competence.

In the first year of development IiNUSAT-1 produced a document Prelimidary Design Review, and a prototype of the nano-satellite. The result shows that the nano-satellite prototype has maximum transfer rate 115.2 kbps and every parameter is sampled every second. Having experience developing and operating the nano-satellite in the first year research project, it will trigger the research related to security and prosperity of the nation. The next version of the nano-satellite will be payloaded with sensors and instruments which can be utilized for national security and prosperity.

(click here for detail)

Categories
Mikrokontroler satelit

On-Board Satellite Controller using ARM Based Microcontroller

Satellite Subsystems

Irrespective of the intended application, is it a communications satellite or a weather satellite or even an Earth observation satellite, different subsystems comprising a typical satellite include the following:

  1. Mechanical structure
  2. Propulsion
  3. Thermal control
  4. Power supply
  5. Tracking, telemetry and command
  6. Attitude and orbit control
  7. Payload
  8. Antennas

The structural subsystem provides the framework for mounting other subsystems of the satellite and also an interface between the satellite and the launch vehicle.

The propulsion subsystem is used to provide the thrusts required to impart the necessary velocity changes to execute all the maneuvers during the lifetime of the satellite. This would include major maneuvers required to move the satellite from its transfer orbit to the geostationary orbit in the case of geostationary satellites and also the smaller maneuvers needed throughout the lifespan of the satellite, such as those required for station keeping.

The thermal control subsystem is essential to maintain the satellite platform within its operating temperature limits for the type of equipment on board the satellite. It also ensures a reasonable temperature distribution throughout the satellite structure, which is essential to retain dimensional stability and maintain the alignment of certain critical equipments.

The primary function of the power supply subsystem is to collect the solar energy, transform it to electrical power with the help of arrays of solar cells and distribute electrical power to other components and subsystems of the satellite. In addition, the satellite also has batteries, which provide standby electrical power during eclipse periods, during other emergency situations and also during the launch phase of the satellite when the solar arrays are not yet functional.

The telemetry, tracking and command (IT &C) subsystem monitors and controls the satellite right from the lift-off stage to the end of its operational life in space. The tracking part of the subsystem determines the position of the spacecraft and follows its travel using angle, range and velocity information. The telemetry part gathers information on the health of various subsystems of the satellite encodes this information and then transmits it. The command element receives and executes remote control commands to effect changes to the platform functions, configuration, position and velocity.

The attitude and orbit control subsystem performs two primary functions. It controls the orbital path, which is required to ensure that the satellite is in the correct location in space to provide the intended services. It also provides attitude control, which is essential to prevent the satellite from tumbling in space and also to ensure that the antennae remain pointed at a fixed point on the Earth’s surface.

The payload subsystem is that part of the satellite that carries the desired instrumentation required for performing its intended function and is therefore the most important subsystem of any satellite. The nature of the payload on any satellite depends upon its mission. The basic payload in the case of a communication satellite is the transponder, which acts as a receiver, amplifier and transmitter. In the case of a weather forecasting satellite, a radiometer is the most important payload. High resolution cameras, multispectral scanners and thematic mappers are the main payloads on board a remote sensing satellite. Scientific satellites have a variety of payloads depending upon the mission. These include telescopes, spectrographs, plasma detectors, magnetometers, spectrometers and so on.

Antennas are used for both receiving signals from ground stations as well as for transmitting signals towards them. There are a variety of antennas available for use on board a satellite. The final choice depends mainly upon the frequency of operation and required gain. Typical antenna types used on satellites include hom antennas, centre-fed and offset-fed parabolic reflectors and lens antennas.

Categories
DSP FPGA Mikrokontroler satelit

INSPIRE Workshop at PENS ITS (October 19-20, 2009)

INSPIRE (Indonesian Nano-Satellite Platform Initiative for Research & Education) is a nonprofit initiative project that aims to build & develop a satellite technology platform (nano-satellites in particular) among universities in Indonesia, by placing students as main participants.

INSPIRE project was created to remind that our country is enough left behind by other developing countries in the field of satellite technology, yet this technology platform can support other sectors such as telecommunications, navigation, marine, environmental, natural resource exploration, as well as early warning system for disaster.

INSPIRE project is expected to raise as well as providing transfer media of knowledge and skills as well as to grow and develop interest in the satellite technology (especially nano-satellites) among the students, and the universities as a center of activity.

Certainly, the final goal of this project does not just stop with the nano-satellite in the university & college students only, but is expected to advance satellite technology in Indonesia, because the technology is very vital existence, either in an academic environment as well as in industrial environments (telecommunication & informatics) .

One early milestone INSPIRE project is convening a national workshop, which brought together the stakeholders in the satellite technology in Indonesia, such as Tubsat LAPAN team, IiNUSAT (Indonesian Inter-University Satellite) team, INASAT team, as well as the experts and the entrepreneurs of nano-satellites from abroad. Moreover, it also invited representatives of students and universities throughout Indonesia as a potential major participant in the next INSPIRE activities. This workshop also bring them together in a forum to discuss strategies and synergies in the future for education and mastering of nano-satellite technology for the welfare of the nation.