Categories
kecerdasan artifisial neural network

Mobile-based Primate Image Recognition using CNN

Abstract

Six out of 25 species of primates most endangered are in Indonesia. Six of these primates are namely Orangutan, Lutung, Bekantan, Tarsius tumpara, Kukang, and Simakobu. Three of the six primates live mostly on the island of Borneo. One form of preservation of primate treasures found in Kalimantan is by conducting studies on primate identification. In this study, an android app was developed using the CNN method to identify primate species in Kalimantan wetlands. CNN is used to extract spatial features from primate images to be very efficient for image identification problems. The data set used in this study is ImageNets, while the model used is MobileNets. The application was tested using two scenarios, namely using photos and video recordings. Photos were taken directly, then reduced to a resolution of 256 x 256. Then, videos were taken in approximately 10 to 30 seconds with two megapixel camera resolution. The results obtained was an average accuracy of 93.6% when using photos and 79% when using video recordings. After calculating the accuracy, the usability test using SUS was performed. Based on the SUS results, it is known that the application developed is feasible to use.

[https://jurnal.ugm.ac.id/ijccs/article/view/65640]

Categories
satelit

Ship Identification on Satellite Image Using Convolutional Neural Network and Random Forest

by Endang Anggiratih and Agfianto Eko Putra

Abstract

Ship identification on satellite imagery can be used for fisheries management, monitoring of smuggling activities, ship traffic services, and naval warfare. However, high-resolution satellite imagery also makes the segmentation of the ship difficult in the background, so that to handle it requires reliable features so that it can be identified adequately between large vessels, small vessels and not ships. The Convolution Neural Network (CNN) method, which has the advantage of being able to extract features automatically and produce reliable features that facilitate ship identification. This study combines CNN ZFNet architecture with the Random Forest method. The training was conducted with the aim of knowing the accuracy of the ZFNet layers to produce the best features, which are characterized by high accuracy, combined with the Random Forest method. Testing the combination of this method is done with two parameters, namely batch size and a number of trees. The test results identify large vessels with an accuracy of 87.5% and small vessels with an accuracy of not up to 50%.

(for more information please click https://doi.org/10.22146/ijccs.37461)