Categories
FPGA neural network

High-Level Synthesize of Backpropagation Artificial Neural Network Algorithm on the FPGA

by Afianah, N., Putra, A.E., and Dharmawan, A.

The studies related to the synthesis of backpropagation artificial neural network algorithms are still based on the direct synthesis, so it requires an effort to modify the algorithm into hardware language so it can be optimized, synthesized and implemented into the FPGA. The High-Level Synthesis (HLS) is a software compiler which able to convert C specifications into Register Transfer Level (RTL) form, which can be synthesized into FPGAs. So the designer can focus on the optimization of the algorithm itself, including speed and resource optimization. This paper discus the results of the synthesis of backpropagation artificial neural network algorithms using HLS (High-Level Synthesis) software. The C-synthesis results based on the Zynq7000 FPGA showed an accuracy of 96.56%, were able to be clocked with a period of around 9.37 ns, with resource usage of 18% for BRAM_18K, 67% for DSP48E, 25% for FF and 71% for LUT. While the utilization difference is not significant compare to the previous studies, the optimization effort using an HLS tools need to be taken into account.

(DOI: 10.1109/ICST47872.2019.9166209)

Categories
PLC/SCADA

Pemodelan Generator Uap Berbasis Jaringan Saraf Tiruan dengan Algoritme Pelatihan BPGD-ALAM

Generator uap merupakan unit plant yang memiliki sistem nonlinear dan kompleks dengan konfigurasi multiple-input-multiple-output (MIMO) yang cukup sulit untuk dimodelkan. Padahal, model generator uap dibutuhkan untuk membuat simulasi seperti operator training simulator (OTS). Tujuan dari penelitian ini yaitu untuk mendapatkan model generator uap yang memiliki 8 parameter luaran dan 9 parameter masukan berbasis jaringan saraf tiruan (JST) menggunakan algoritme pelatihan BPGD-ALAM sehingga diperoleh model yang mendekati sistem nyata. Data diperoleh dari generator uap PT. Chevron Pacific Indonesia, Duri dan dibagi menjadi tiga jenis, yaitu data latih, data validasi dan data uji. Data latih digunakan untuk mendapatkan model setiap luaran melalui proses pelatihan. Verifikasi model juga dilakukan untuk setiap epoch-nya menggunakan data validasi untuk memantau proses pelatihan apakah terjadi overfitting atau tidak. Delapan model JST yang diperoleh diuji menggunakan data uji untuk mengetahui performa dari model. Dari hasil penelitian, diperoleh konfigurasi arsitektur model JST yang berbeda-beda untuk setiap luaran dengan nilai RMSE rendah dari 9,71 % artinya telah dihasilkan model yang mendekati sistem nyata dari generator uap.

(klik disini untuk selengkapnya)