Agfianto Eko Putra, Catur Atmaji, and Fajrul Ghaleb
In the area of affective computing technology, the classification of emotions can be used for a variety of things such as health, entertainment, education, etc. This study determined the classification of emotions based on EEG (Electroencephalography) signals, which is emotions are classified according to the 2-dimensional graphics modeling of arousal and valence. This research uses a wavelet decomposition method to get features from the EEG signal. Features taken from the signal is a power signal decomposition of sub-band theta, alpha, beta, and gamma. These features are derived from the 5 levels decomposition using Coiflet2 and Daubechies2 mother wavelet. Classification is done using k-Nearest Neighbor (kNN) with the closest neighbor calculated based on correlation distance. Data validation is done using 5-folds cross-validation for validation of test data and training data. The highest accuracy obtained by using the mother wavelet Coiflet 2 with kNN parameter k=21. Valence classification accuracy is 57.5%, and accuracy of arousal is 63.98%.