Categories
Mikrokontroler satelit

On-Board Satellite Controller using ARM Based Microcontroller

Satellite Subsystems

Irrespective of the intended application, is it a communications satellite or a weather satellite or even an Earth observation satellite, different subsystems comprising a typical satellite include the following:

  1. Mechanical structure
  2. Propulsion
  3. Thermal control
  4. Power supply
  5. Tracking, telemetry and command
  6. Attitude and orbit control
  7. Payload
  8. Antennas

The structural subsystem provides the framework for mounting other subsystems of the satellite and also an interface between the satellite and the launch vehicle.

The propulsion subsystem is used to provide the thrusts required to impart the necessary velocity changes to execute all the maneuvers during the lifetime of the satellite. This would include major maneuvers required to move the satellite from its transfer orbit to the geostationary orbit in the case of geostationary satellites and also the smaller maneuvers needed throughout the lifespan of the satellite, such as those required for station keeping.

The thermal control subsystem is essential to maintain the satellite platform within its operating temperature limits for the type of equipment on board the satellite. It also ensures a reasonable temperature distribution throughout the satellite structure, which is essential to retain dimensional stability and maintain the alignment of certain critical equipments.

The primary function of the power supply subsystem is to collect the solar energy, transform it to electrical power with the help of arrays of solar cells and distribute electrical power to other components and subsystems of the satellite. In addition, the satellite also has batteries, which provide standby electrical power during eclipse periods, during other emergency situations and also during the launch phase of the satellite when the solar arrays are not yet functional.

The telemetry, tracking and command (IT &C) subsystem monitors and controls the satellite right from the lift-off stage to the end of its operational life in space. The tracking part of the subsystem determines the position of the spacecraft and follows its travel using angle, range and velocity information. The telemetry part gathers information on the health of various subsystems of the satellite encodes this information and then transmits it. The command element receives and executes remote control commands to effect changes to the platform functions, configuration, position and velocity.

The attitude and orbit control subsystem performs two primary functions. It controls the orbital path, which is required to ensure that the satellite is in the correct location in space to provide the intended services. It also provides attitude control, which is essential to prevent the satellite from tumbling in space and also to ensure that the antennae remain pointed at a fixed point on the Earth’s surface.

The payload subsystem is that part of the satellite that carries the desired instrumentation required for performing its intended function and is therefore the most important subsystem of any satellite. The nature of the payload on any satellite depends upon its mission. The basic payload in the case of a communication satellite is the transponder, which acts as a receiver, amplifier and transmitter. In the case of a weather forecasting satellite, a radiometer is the most important payload. High resolution cameras, multispectral scanners and thematic mappers are the main payloads on board a remote sensing satellite. Scientific satellites have a variety of payloads depending upon the mission. These include telescopes, spectrographs, plasma detectors, magnetometers, spectrometers and so on.

Antennas are used for both receiving signals from ground stations as well as for transmitting signals towards them. There are a variety of antennas available for use on board a satellite. The final choice depends mainly upon the frequency of operation and required gain. Typical antenna types used on satellites include hom antennas, centre-fed and offset-fed parabolic reflectors and lens antennas.

Categories
Mikrokontroler

Pengalaman Pertama pake Mini2440 (Jilid-3)

Nah sekarang saatnya melakukan pengujian sistem Mini2440 menggunakan berkas pengujian yang sudah dikompilasi menggunakan ADS sebelumnya. Kitapun bisa melakukan kompilasi sendiri tentunya. Intinya program pengujian yang disertakan dalam paket Mini2440 merupakan pengujian dengan tampilan laporan (hasil pengujian) atau interaksi melalui port serial, tidak menggunakan GUI pada touhscreen, karena, menurut saya nich, agar dapat digunakan secara umum terutama yang memiliki Mini2440 tanpa disertai LCD touchscreen.

Setelah dilakukan proses download berkas “2440test.bin” ke sistem Mini2440, maka ditampilkan menu yang ditunjukkan pada gambar berikut:

Pada saat menu tersebut ditampilkan, pada layar LCD 3,5inch ditampilkan gambar bunga matahari:

Categories
Mikrokontroler

Pengalaman Pertama pake Mini2440 (Jilid-2)

Pengalaman pertama menggunakan Mini2440 membuat saya kebingungan. Bagaimana tidak? Dokumentasinya sangat minim, kalau mo cari yang agak lengkap masih dalam bahasa China, manual Bahasa Inggris yang disertakan dalam DVD ROM hanya bersifat manual singkat. Lumayan-lah daripada tidak ada sama sekali.

Pertama kali dihidupkan dengan konfigurasi booting dari Nand Flash akan ditampilkan Linux dengan GUI Qtopia…

Berbekal manual China dan Inggris tersebut saya coba untuk melakukan koneksi Mini2440 dengan PC. Disebutkan bahwa perlu dua kabel untuk melalukan koneksi, sekaligus download program ke Mini2440. Untuk urusan komunikasi dengan PC digunakan pre-bootloader yang sudah tersimpan dalam Mini2440 yang diberi nama SuperVivi atau Vivi, ini merupakan program open source yang dimiliki Samsung yang digunakan untuk berkomunikasi antara papan pengembang Mini2440 dengan PC. Sedangkan urusan transfer data menggunakan kabel USB.

Categories
Mikrokontroler

Pengalaman Pertama pake Mini2440 (Jilid-1)

Alhamdulillah, seorang rekan/sahabat sempat meminjamkan MIni2440 kepada saya untuk dilakukan eksplorasi sehingga bisa kita lakukan penjajagan produk aplikasi lebih lanjut…

Apaan Mini2440?

Jika Anda pernah membaca artikel saya tentang mikrokontroler atau mikroprosesor Samsung S3C2440 (klik disini), nah gambar-gambar yang saya sertakan disana merupakan Mini2440. Berikut saya sertakan (lagi)…

Mini2440 menggunakan ARM920T
Mini2440 menggunakan ARM920T

Ini merupakan Mini2440 minimal, sedangkan yang dilengkapi dengan LCD 3,5″ Touchscreen ditunjukkan pada gambar berikut…

Mini2440 dilengkapi LCD TouchScreen
Mini2440 dilengkapi LCD TouchScreen

Mini2440 merupakan sebuah papan pengembang untuk ARM9 yang murah (harganya sekitar 140$ US). Dilengkapi dengan prosesor Samsung S3C2440 dan penggunaan daya yang stabil serta profesional untuk antar chip dengan CPU dan keamanan reset untuk stabilitas sistem. Mini2440 menggunakan PCB berlapis emas 4 lapis (layer). Dengan panduan yang tersedia, Anda bisa menguasai (tentunya juga memahami) pengembangan proses-proses Embedded Linux dan WinCE (menggunakan bahasa C). Untuk informasi lebih lanjut, dan tentunya Anda bisa berbahasa Cina, silahkan kunjungi http://www.arm9.net.